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Bifurcations in reaction-diffusion systems in chaotic flows
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We study the behavior of reacting tracers in a chaotic flow. In particular, we look at an autocatalytic reaction
and at a bistable system which are subjected to stirring by a chaotic flow. The impact of the chaotic advection
is described by a one-dimensional phenomenological model. We use a nonperturbative technique to describe
the behavior near a saddle node bifurcation. We also find an approximation of the solution far away from the
bifurcation point. The results are confirmed by numerical simulations and show good agreement.
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I. INTRODUCTION several physical, chemical, and biological context3-18.
In recent years, interest has risen in the dynamics of rel N& Phenomenological model) can be justified by the fol-

acting tracers in a complex flow environment. Apart from thelOWing considerations. The chaotic advection causes fila-
purely theoretical challenge, this is due to the environmenta€nts to be stretched in one direction and compressed in
and industrial applications. Examples are ubiquitous in naanothe_r. In the stretched direction, the_concentraﬂon is ho-
ture and industry, and include mixing of reactants withinmogenized and gradients along the filaments can be ne-
continuously fed or batch reactdrs,2], the development of 9lected. This motivates a one-dimensional reduction for the
plankton blooms and occurrence of plankton patchines§oncentration in the direction transverse to the filament, sub-
[3-6], and increased depletion of ozone caused by chlorinééCt to the effect of stirring and compression. The parameter
filaments[7]. A can be thought of as the Lagrangian mean strain in the

In typical chaotic flows, fluid parcels are deformed. Cha_contractln_g direction, and is given by thg absolute value of
otic advection gives rise to regions of stretching and folding the negative Lyapunov exponent. For a different approach to
causing fluid parcels to form filamental structures. Tracerghis problem se¢19]. _ .
are advected with these filaments, which leads to an in- N [13-18, it was numerically shown that the behavior of
creased surface area of the tracers. In the case of reactifge one-dimensional filament modél) qualitatively de-
tracers, this has strong implications on the reaction kinetic§cribes the behavior of the corresponding full 2D reaction-
and gives rise to phenomena that are not observed in a nogdvection-diffusion system. In particular, a saddle node bi-
stirred flow. For example, differential fluid flow can generatefurcation ~was —observed. The saddle node can be
a non-Turing mechanism for pattern formatif8J; chaotic ~Phenomenologically understood as the competition of stir-
flow can determine synchronization in oscillatory mediand and reaction. If the stirring is too strong, i.e., it occurs
[9,10] or cause clusteringl1]. Chaotic stirring also impliesa ©n & fastgr time scale than the reaction, the filaments become
dependence of mixing results on the initial condit[d:]. thl!’] and(m_the case of a closed floveoon cover the whole

In principle, these phenomena can be studied directly in duid container, or(in the case of an open floweave the -
two- or three-dimensional2D or 3D) reaction-advection- fluid container. Consequently, perturbations are either carried
diffusion system with huge computational effort. An analyti- Out of th_e container, or filaments are too th_ln to cause spread
cal treatment of the full system is prohibited by the compli-Of reaction. In some cases, an asymptotic theory could be
cated nature of the underlying equations, which involvedeveloped for slow stirring rates far away from the saddle
multiple-scale processes. Simplified models are needed foPde[14]. However, the bifurcation point and the pulse be-
capture essential features of the influence of the stirring oRl@vior close to the saddle node have not been previously
the reaction kinetics. Such a model was first introduced irfléscribed to our knowledge. We use a nonperturbative, non-

[4,5]. They replaced the two-dimensional problem of react-asymptotic technique developed for excitable medig2]
ing tracers by a one-dimensional one of the form to describe the behavior near the saddle node. We consider a

bistable and an autocatalytic system, and determine the criti-
1) cal bifurcation parameter and the pulse shape close to the

bifurcation point, as a function of the equation parameters.
Moreover, we apply the same technique to describe the form
of the solution far away from the bifurcation point going

) d &
Pl )\XO,)_XCi = Diﬁci + Fi(ci, ki),
for n reacting tracers;, with diffusion coefficient®;, reac-
tl;n r_ateski(,j ;nd Etlrrlm_g raten. A shn_gléa.rej%tmg traf::er. (\leth beyond the asymptotic analysis [df4].

(c)=c and F(c)=c(1-c) was studied irj4,5], but the i ea In the next section, we present the two models under con-
has been taken up by several authors and was applied Qqeration. In Sec. Il we review the perturbation technique
more interacting tracers in bistable and excitable media IYeveloped in[20], and in Sec. IV we show results of our

perturbation technique for the models presented in Sec. Il
close to the saddle node bifurcation, and compare with nu-

*Corresponding author. Electronic address: merical results. In Sec. V we find an approximate solution
gottwald@maths.usyd.edu.au for the front solutions far away from the bifurcation point.
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Il. THE MODELS cannot describe the behavior close to the bifurcation point. It

We use two different one-component models to illustrate- this saddle node bifurcation which we are mainly con-

our method. We study the same models usgd4. Therein cerned with in this work.
also, the behavior of the full 2D reaction-advection-diffusion

systems for closed and open chaotic flows was investigated. IIl. NONPERTURBATIVE METHOD

We follow their notation and rescale E@L) by introducing

nondimensional variables =\t and x'=y\/Dx to obtain A method was developed if20] to study critical wave

(omitting the primep propagation of single pulses and pulse trains in excitable

media in one and two dimensions. It was based on the ob-

d J P servation that close to the bifurcation point the pulse shape is
—c—-Xx—c=—c+ DaF(c) (2 . . . . ;
at X Ix? ' approximately a bell-shaped function. Numerical simulations

) _ show that this is the case for both systef@sand(4) close
where the Damkohler number D&\ measures the ratio 14 the bifurcation point at DaA test function approximation
of the time scales of fluid motion and reaction. Smalliyat optimizes the two free parameters of a bell-shaped func-
Damkéhler numbers correspond to fast stirring and/or slowjgn je.  its amplitude and its width, allows us to find the

reaction. For large Damkohler numbers, the system behavegyal pifurcation point Da and determine the pulse shape

asymptotically like an unstirred system. _ for close-to-critical pulses at Damkohler numbers neay. Da
For the reaction termF(c), we use the Fisher- \ve note that the framework of asymptotic techniques, such
Kolomogorov-Petrovsky-Piscounoff ty@1,22 as inner and outer expansions where the solution is separated
9 9 P into a steep narrow front and a flat plateau, are bound to fail
ac—x5c:%c+Dac(1—c). (3) close to the bifurcation point as the pulse is clearly bell

shaped, and such a separation is not possible anymore. We

This equation has two equilibrium points: an unstable fixedhall make explicit use of the shape of the pulse close to the
pointc=0, and a stable one=1. It describes the propagation cfitical point and parametrize the pulse appropriately, as is
of an unstable phase into a stable phase. The reaction terdone in the method of collective coordinates in the studies of
arises naturally for autocatalytic reactioAs-B— 2B, and  solitary waveq26].

was first introduced in the context of population dynamics in We choosec of the general form

[21] and in the context of combustion [22]. Equation(3)

has recently been used as a caricature to model plankton c(x) =f,C(7) with 7=wx, (5)
blooms[4].

As a second model we introduce a generic bistable mOd%hereC(n) is a symmetric, bell-shaped functida Gauss-

9 2 ian, for examplg of unit width and height, and, is the
—Cc-x_—-c=——c+Dac(a-c)(c-1), (4)  amplitude of the pulse. Numerical simulations reveal that
at X X S . .
close to the saddle node, the solution is asymptotically given
where 0<a<1. This system has two stable fixed points by a Gaussian. However, our result does not depend on the
c=0 andc=1, which are separated by an unstable fixed poinspecific choice of the test function, and the numerical values
atc=a. it is well known that in the unstirred case an initial differ only marginally when sech functions are used. We re-
perturbation which is larger than over a finite range will ~ strict the solutions to a subspace of a bell-shaped function
spread over the whole domain i<0x<0.5. If 0.5<a<1, C(#), which is parametrized by the amplitudg and the
an initial perturbation will decay to the stable stateO. inverse pulse widtlw. These parameters are determined by
For the nonstirred case, both systems are well known anthinimizing the error made by the restriction to the subspace
well described in textbooks such &23-26. The stirred defined by(5). This is achieved by projecting E() [or Eq.
cases were investigated numerically[i4,5]. In the stirred  (4)] onto the tangent space of the restricted subspace, which
case stationary fronts exist for large enough values of thés spanned byic/df,=C and dc/ow=7,C,/w. This assures
Damkdohler number for both models. The existence of stathat the error made by restricting the solution space to the
tionary fronts in system&3) and(4) is due to a balance of the test functions is minimized. We set the integral of the product
x-dependent stirring and the counterpropagating fronts. Amf Eq. (3) [or Eq.(4)] with the basis functions of the tangent
initial sufficiently large perturbation seeded»at0 spreads space(over the entirey domair to zero. This will lead to
as a front driven by its reaction kinetics and diffusion until it algebraic equations for the amplituéigand the inverse pulse
reaches the locatiox where its velocity equals the ambient width w, and also yield the critical Damkohler number Da
spatially dependent velocity of the chaotic stirring*— Moreover, for the solution at large Damkdhler numbers
It has been observed for both modeld 14] that there is  far way from the bifurcation point, where the solution takes
a critical Damkohler number such that no stationary pulseghe shape of a well defined front, we may use a superposition
exist for Da<Da,, i.e., when the time scale of the chaotic of tanh functions for the test functioB(#). Here, the free
advection7s=1/\ becomes too fast with respect to the time parameters are the inverse width of the interface and the total
scale of the reactiofy=1/k. For large Damkéhler numbers, width of the front. We can apply the same technique to de-
an asymptotic expression for the scaling of the total concentermine these two free parameters. This will be done in
tration was developed if14]. However, these technigues Sec. V.
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FIG. 1. The steady solutions of the autocatalytic reaction @ X
for logarithmically spaced values of Da between DazRad 1
Da=100. .
IV. BEHAVIOR CLOSE TO THE SADDLE NODE 0.8r

BIFURCATION

In this section we apply the technique described in the 06k
previous section to describe the behavior near the saddl _
node bifurcation where the solution is well approximated by ™
a bell-shaped function with two free parameters, namely, the 0.4r
amplitudefy and the inverse pulse width. This is a purely
numerical observation and has no further analytical justifica-

tion. 0.2
A. Autocatalytic system 0 s s s s s
o ) ) 0 0.5 1 15 2 25 3 35
We first investigate the autocatalytic systé®). As has  (b) Da

been observed numerically {i4], steady solutions to the
one-dimensional problem can be obtained for values of FIG: 2. C_:ompari_son of_ numerical simula_tions of our analytical
Da>Da.. As we approach the bifurcation point the ampli- results(continuous lineswith the autoc?atalytlc model EcﬁB).n(a)
tudes of the solutions to the autocatalytic reaction decrease foHSec(x) at Da=1.35.(b) Pulse amplitudef, versus Damkohler
zero (see Fig. 1 Conversely, with increasing Damkohler number Da. The continuous line is our analytical result for the
number the pulse width increases and the maximal amplitug&aP!é branch of the saddle node bifurcatiéh
saturates aroundx)=1. Here, the solution is a regular front
solution with a well defined plateau and a narrow steep front. ‘= ii(<cz>(4Da— 1) _x 2C2>>

We are interested in steady-state solutions and set 0~ (C® 5Da 2 T |
aclat=0 in Eq.(3). We obtain the ordinary differential equa-

tion Choosing a Gaussian test functiGmexp(—77), this reduces
further to
w2 S 4 % L bac-1,0) =0 (®) 5
—_— 7]_ — = , ““r _
S : o:ﬁ<Da—l> (©)
5 Da

wheren=wx. As described in Sec. Ill, we need to project Eq.
(6) onto the tangent space of the restricted solution submaniFhis immediately yields the critical Damkdhler number

fold. We require Da.=1, which is verified by numerical simulation of the full
B autocatalytic systenB) [see Fig. 20)].
(WC,,+ 7C,+ DaC(1 - ,C)|C) =0, ) Using the result9) for the amplitudef, we can calculate
the inverse pulse widtlwv from either(7) or (8). We obtain
(W?C,,+ 5C,+ DaC(1-f,C)[#C,) =0, (8)
7 -2Da
where the angular brackets indicate integration over the W=/ (10

whole 7 domain. Using(C,,C)=~(C%=2(»C,,C,) and 10
(7C,CH=~(C*1)/(a+1), we can simplify the set of equa- For values of Da 3.5 Eq.(10) yields purely imaginary val-
tions to get an expression for the amplitude of the form  ues indicating that our method breaks down, and that at these
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08 ’ This yields two solutions for the amplitudi, one corre-
sponding to a stable branch and one corresponding to an
06 | unstable branch. These two branches collide at the critical
- Damkohler number and disappear via a saddle node bifurca-
% tion. An expression for the critical Damkdhler number for
0.4l | any given value ofr can be obtained from E@12), with the
' condition B>~ 4AC=0.We find that
Da.= . with gq= 25
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FIG. 3. The steady solutions of the bistable reaction with o _ ]
=0.2 for logarithmically spaced values of Da between Daz&al ~ Which is approximatelya,,~0.4744. Hence the chaotic
Da=1000. stirring changes the Maxwell point which in the nonstirred

case is av=0.5.
As in Sec. IV A the inverse width can be calculated as

Damkéhler numbers the solution cannot be approximated b ol

a bell-shaped function anymore. We note that the solutio . . .
“saturates” to become a frontlike solutiqgee Fig. 1 at In Fig. 4 we show a comparison of our analytical r_esults
Da~ 10. However, the solution loses its bell-shaped charact12 and(13) with numerical simulations of Eq11). In Fig.

ter before that “saturation” point 4 we see that the correspondence of our analytical results

Fiqure 2 shows a comparison of our analvtical res(@is with the numerical simulation of the full systefhl) is much
and(%O) with numerical si?nulations of Ec{3).%’he anali;?i- better for the unstable branch than for the stable branch. As a

cal results for the amplitude fit progressively better as wenatter of fact, the unstable solutions obtained by integrating
approach the saddle node, corresponding to the fact that thél) Py means of a shooting method stay close to a bell-
solution is well approximated by a bell-shaped function theSDaaPSifunCt'on even far away from the bifurcation point at

closer it is to the saddle node.

V. BEHAVIOR FAR AWAY FROM THE BIFURCATION
B. Bistable system ] ] . ) )
In this section we apply the technique described in Sec.

We can apply the same methodology used in Sec. IV Atqy| 1o describe the behavior far away from the saddle node
the bistable systert¥). The steady solutions of the bistable pisrcation. For large Damkéhler numbers the solution is not
system have the same behavior as those in the autocatalyfg|| shaped anymore but instead becomes a front solution
system(3). Close to the bifurcation ppint at Qme solution  \with a well defined plateagsee Figs. 1 and)3 Numerical
takes the form of a bell-shaped functitee Fig. 3 whereas  simylations show that the solution in this regime is well ap-

the solution approaches a front solution for higher values ofoximated by a test function of the following form:
the Damkdéhler number as is evidenced in Fig. 3.

As in Sec. IV A, we look at stationary front solutions in C(x) = 1/2{tanHw(x + v)] - tanfw(x - »)]}. ~ (14)

the study of(4), and consider Again we have two free parameters, namely, the total width

#c  de v and the inver.s_e interface.wid_m. This, in principle, pro-
2—2 + 77— +DaC(a-f,C)(fC-1)=0. (11 vides two conditions by projecting onto the tangent space of
dn° “dy the restricted solution space spanneddfy sw and 4C/ dv.
In the literature of lamellar one-dimensional model equa-
Integrating the product of E411) with C and withn dC/d7  tions, one encounters the following phenomenological argu-
over then domain leads to expressions for the amplitdgle  ment for the location of the front. We recall that a stationary

and the inverse widthw. front is given through a balance of the front velocitywith
We obtain a quadratic equation for the amplitude, the velocity of the chaotic stirring. The front has a zero
velocity whenv =x, which impliesv=wv. If we now approxi-
Af2+Bfy+C=0, (12 mate the front velocity by its unstirred value, we can cal-

culatev as a function of the Damkdhler number.
where, as before, the coefficients can be obtained explicitly Our non-perturbative technique is able to deduce this phe-
for a specific choice of test function. Choosing a Gaussiamomenological formula for the front width for the bistable
test function, we have cases. There is strong agreement between our theory and the
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FIG. 4. Comparison of numerical simulations of our analytical ~ F|G. 5. Solution behavior for large Damkohler numbers Da far
results(continuous lineswith the bistable model Eq11) solved by  away from the saddle node bifurcation. Numerical simulations of

a shooting methoda) Pulsec(x) at Da=9.(b) Pulse amplitudey  the full autocatalytic systert8) are depicted by stars; the analytical
versus Damkohler number Da. The continuous and dashed linggsults are depicted by continuous linéa) Total width » as a

show the stable and the unstable branches, respectively, of thfinction of the Damkdhler number. The continuous line shows the

saddle node bifurcation according to our analytical regif. phenomenological formulél5). (b) Inverse interface widthv as a
function of the Damkdhler number. The continuous line shows our

phenomenological formulaéup to 0.1%. Therefore, for analytical result.

simplicity, in the following sections we use the phenomeno-

logical argument to close the equations for the two free variality, we choose the projection on@C/sw. The resulting
ablesw and v. equation is

A. Autocatalytic system (w?C,,,+ nC,+DaC(1-C)|nC,)=0. (16)

For the autocatalytic systef8), the front velocity for the
unstirred case is given ly=2yDa [provided that the initial
condition is of a form such adl4) [23,24]]. Hence the phe-
nomenological argument yields

Here we choosél4) as a test function and expresdy (15).
The resulting equation faw is transcendental and we need to
evaluate it numerically. In Fig. () a comparison of our
result with the numerical simulation of E) is shown.

»=2\Da. (15)

. . . B. Bistable system
Figure 5a) shows that the phenomenological argument in-

deed is a good approximation. For the bistable system, the front velocity for the unstirred
Equation(15) can now be used to close one of the two case is given by =v2Da1/2-a) [23,24. Hence our phe-
conditions of the projection method. Without loss of gener-nomenological argument now yields
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14 ' ' ' ' I logical argument with the actual dynamics of the full system.
Again, Eq.(17) can be used to calculate the inverse inter-
12 face widthw from the condition that the projection of E@)
onto dC/aw vanishes. This condition is given by
10
(w’C,,+ nC,+DaC(a-C)(C-1)[5C,)=0, (18)

8 where, as above, we ugd) as a test function, and express
> v by (17). As for the autocatalytic system, the inverse width
6 w can only be given by numerically evaluatifgg). In Fig.

6(b) a comparison of our result with the numerical simula-
4 tion of Eq. (4) is shown.
5 VI. SUMMARY AND DISCUSSION
We studied the solution behavior near the saddle node
00 200 400 500 800 1000 bifurcation v_vhlch_occ_urs in ong—dlmenspnal simplified r_nod-
(a) Da els of reaction-diffusion equations subjected to chaotic ad-

vection. The interplay of reaction dynamics with the chaotic
stirring leads to stationary fronts in the one-dimensional
model equation corresponding to filaments with a well-
defined width in the full two-dimensional system. Depending
on the Damkoéhler number which measures the ratio of the
time scales of the chaotic fluid motion and the reaction ki-
netics, the system undergoes a saddle bifurcation when the
fluid motion is much faster than the reaction kinetics.

We applied a technique originally developed for excitable
media[20] to study this saddle node bifurcation. We deter-
mined the critical Damkohler number and described the so-
lution close to the bifurcation point with good agreement
with numerical simulations of the full partial differential

equations.
By choosing a front-shaped test function we were able to
0 s - ‘ ‘ apply the technique originally developed to study behavior
0 200 400 600 800 1000 close to the saddle node bifurcation to describe fully devel-

b
©) Da oped fronts far away from the bifurcation point. The two

FIG. 6. Solution behavior for large Damkohler numbers Da farconditions given by the variational technique for the two free
away from the saddle node bifurcation. Numerical simulations ofparameters of such a stationary front, i.e., its inverse inter-
the full bistable systen{4) are depicted by stars; the analytical face widthw and its total widthy, accurately reproduced the
results are depicted by continuous linga) Total width » as a  numerical results. Moreover, we were able to reproduce a
function of the Damkdhler number. The continuous line shows thewidely used phenomenological argument, relating the front
phenomenological formulél?). (b) Inverse interface widthv as a  width to the front velocity of the unstirred case. A compari-

function of the Damkohler number. The continuous line shows ourson with numerical simulations justified our approach.
analytical resuli(18).
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