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We study the behavior of reacting tracers in a chaotic flow. In particular, we look at an autocatalytic reaction
and at a bistable system which are subjected to stirring by a chaotic flow. The impact of the chaotic advection
is described by a one-dimensional phenomenological model. We use a nonperturbative technique to describe
the behavior near a saddle node bifurcation. We also find an approximation of the solution far away from the
bifurcation point. The results are confirmed by numerical simulations and show good agreement.
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I. INTRODUCTION

In recent years, interest has risen in the dynamics of re-
acting tracers in a complex flow environment. Apart from the
purely theoretical challenge, this is due to the environmental
and industrial applications. Examples are ubiquitous in na-
ture and industry, and include mixing of reactants within
continuously fed or batch reactorsf1,2g, the development of
plankton blooms and occurrence of plankton patchiness
f3–6g, and increased depletion of ozone caused by chlorine
filamentsf7g.

In typical chaotic flows, fluid parcels are deformed. Cha-
otic advection gives rise to regions of stretching and folding,
causing fluid parcels to form filamental structures. Tracers
are advected with these filaments, which leads to an in-
creased surface area of the tracers. In the case of reacting
tracers, this has strong implications on the reaction kinetics
and gives rise to phenomena that are not observed in a non-
stirred flow. For example, differential fluid flow can generate
a non-Turing mechanism for pattern formationf8g; chaotic
flow can determine synchronization in oscillatory media
f9,10g or cause clusteringf11g. Chaotic stirring also implies a
dependence of mixing results on the initial conditionf12g.

In principle, these phenomena can be studied directly in a
two- or three-dimensionals2D or 3Dd reaction-advection-
diffusion system with huge computational effort. An analyti-
cal treatment of the full system is prohibited by the compli-
cated nature of the underlying equations, which involve
multiple-scale processes. Simplified models are needed to
capture essential features of the influence of the stirring on
the reaction kinetics. Such a model was first introduced in
f4,5g. They replaced the two-dimensional problem of react-
ing tracers by a one-dimensional one of the form

]

]t
ci − lx

]

]x
ci = Di

]2

]x2ci + Fisci,kid, s1d

for n reacting tracersci, with diffusion coefficientsDi, reac-
tion rateski, and stirring ratel. A single reacting tracer with
Fscd=c andFscd=cs1−cd was studied inf4,5g, but the idea
has been taken up by several authors and was applied to
more interacting tracers in bistable and excitable media in

several physical, chemical, and biological contextsf13–18g.
The phenomenological models1d can be justified by the fol-
lowing considerations. The chaotic advection causes fila-
ments to be stretched in one direction and compressed in
another. In the stretched direction, the concentration is ho-
mogenized and gradients along the filaments can be ne-
glected. This motivates a one-dimensional reduction for the
concentration in the direction transverse to the filament, sub-
ject to the effect of stirring and compression. The parameter
l can be thought of as the Lagrangian mean strain in the
contracting direction, and is given by the absolute value of
the negative Lyapunov exponent. For a different approach to
this problem seef19g.

In f13–18g, it was numerically shown that the behavior of
the one-dimensional filament models1d qualitatively de-
scribes the behavior of the corresponding full 2D reaction-
advection-diffusion system. In particular, a saddle node bi-
furcation was observed. The saddle node can be
phenomenologically understood as the competition of stir-
ring and reaction. If the stirring is too strong, i.e., it occurs
on a faster time scale than the reaction, the filaments become
thin andsin the case of a closed flowd soon cover the whole
fluid container, orsin the case of an open flowd leave the
fluid container. Consequently, perturbations are either carried
out of the container, or filaments are too thin to cause spread
of reaction. In some cases, an asymptotic theory could be
developed for slow stirring ratesl far away from the saddle
nodef14g. However, the bifurcation point and the pulse be-
havior close to the saddle node have not been previously
described to our knowledge. We use a nonperturbative, non-
asymptotic technique developed for excitable media inf20g
to describe the behavior near the saddle node. We consider a
bistable and an autocatalytic system, and determine the criti-
cal bifurcation parameter and the pulse shape close to the
bifurcation point, as a function of the equation parameters.
Moreover, we apply the same technique to describe the form
of the solution far away from the bifurcation point going
beyond the asymptotic analysis off14g.

In the next section, we present the two models under con-
sideration. In Sec. III we review the perturbation technique
developed inf20g, and in Sec. IV we show results of our
perturbation technique for the models presented in Sec. II
close to the saddle node bifurcation, and compare with nu-
merical results. In Sec. V we find an approximate solution
for the front solutions far away from the bifurcation point.
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II. THE MODELS

We use two different one-component models to illustrate
our method. We study the same models used inf14g. Therein
also, the behavior of the full 2D reaction-advection-diffusion
systems for closed and open chaotic flows was investigated.
We follow their notation and rescale Eq.s1d by introducing
nondimensional variablest8=lt and x8=Îl /Dx to obtain
somitting the primesd

]

]t
c − x

]

]x
c =

]2

]x2c + Da Fscd, s2d

where the Damköhler number Da=k/l measures the ratio
of the time scales of fluid motion and reaction. Small
Damköhler numbers correspond to fast stirring and/or slow
reaction. For large Damköhler numbers, the system behaves
asymptotically like an unstirred system.

For the reaction termFscd, we use the Fisher-
Kolomogorov-Petrovsky-Piscounoff typef21,22g

]

]t
c − x

]

]x
c =

]2

]x2c + Da cs1 − cd. s3d

This equation has two equilibrium points: an unstable fixed
point c=0, and a stable onec=1. It describes the propagation
of an unstable phase into a stable phase. The reaction term
arises naturally for autocatalytic reactionsA+B→2B, and
was first introduced in the context of population dynamics in
f21g and in the context of combustion inf22g. Equations3d
has recently been used as a caricature to model plankton
bloomsf4g.

As a second model we introduce a generic bistable model

]

]t
c − x

]

]x
c =

]2

]x2c + Da csa − cdsc − 1d, s4d

where 0,a,1. This system has two stable fixed points
c=0 andc=1, which are separated by an unstable fixed point
at c=a. it is well known that in the unstirred case an initial
perturbation which is larger thana over a finite range will
spread over the whole domain if 0,a,0.5. If 0.5,a,1,
an initial perturbation will decay to the stable statec=0.

For the nonstirred case, both systems are well known and
well described in textbooks such asf23–26g. The stirred
cases were investigated numerically inf14,5g. In the stirred
case stationary fronts exist for large enough values of the
Damköhler number for both models. The existence of sta-
tionary fronts in systemss3d ands4d is due to a balance of the
x-dependent stirring and the counterpropagating fronts. An
initial sufficiently large perturbation seeded atx=0 spreads
as a front driven by its reaction kinetics and diffusion until it
reaches the locationx! where its velocity equals the ambient
spatially dependent velocity of the chaotic stirring −x!.

It has been observed for both models inf14g that there is
a critical Damköhler number such that no stationary pulses
exist for Da,Dac, i.e., when the time scale of the chaotic
advectiont f =1/l becomes too fast with respect to the time
scale of the reactiontr =1/k. For large Damköhler numbers,
an asymptotic expression for the scaling of the total concen-
tration was developed inf14g. However, these techniques

cannot describe the behavior close to the bifurcation point. It
is this saddle node bifurcation which we are mainly con-
cerned with in this work.

III. NONPERTURBATIVE METHOD

A method was developed inf20g to study critical wave
propagation of single pulses and pulse trains in excitable
media in one and two dimensions. It was based on the ob-
servation that close to the bifurcation point the pulse shape is
approximately a bell-shaped function. Numerical simulations
show that this is the case for both systemss3d and s4d close
to the bifurcation point at Dac. A test function approximation
that optimizes the two free parameters of a bell-shaped func-
tion, i.e., its amplitude and its width, allows us to find the
actual bifurcation point Dac, and determine the pulse shape
for close-to-critical pulses at Damköhler numbers near Dac.
We note that the framework of asymptotic techniques, such
as inner and outer expansions where the solution is separated
into a steep narrow front and a flat plateau, are bound to fail
close to the bifurcation point as the pulse is clearly bell
shaped, and such a separation is not possible anymore. We
shall make explicit use of the shape of the pulse close to the
critical point and parametrize the pulse appropriately, as is
done in the method of collective coordinates in the studies of
solitary wavesf26g.

We choosec of the general form

csxd = f0Cshd with h = wx, s5d

whereCshd is a symmetric, bell-shaped functionsa Gauss-
ian, for exampled of unit width and height, andf0 is the
amplitude of the pulse. Numerical simulations reveal that
close to the saddle node, the solution is asymptotically given
by a Gaussian. However, our result does not depend on the
specific choice of the test function, and the numerical values
differ only marginally when sech functions are used. We re-
strict the solutions to a subspace of a bell-shaped function
Cshd, which is parametrized by the amplitudef0 and the
inverse pulse widthw. These parameters are determined by
minimizing the error made by the restriction to the subspace
defined bys5d. This is achieved by projecting Eq.s3d for Eq.
s4dg onto the tangent space of the restricted subspace, which
is spanned by]c/]f0=C and ]c/]w=hCh /w. This assures
that the error made by restricting the solution space to the
test functions is minimized. We set the integral of the product
of Eq. s3d for Eq.s4dg with the basis functions of the tangent
spacesover the entireh domaind to zero. This will lead to
algebraic equations for the amplitudef0 and the inverse pulse
width w, and also yield the critical Damköhler number Dac.

Moreover, for the solution at large Damköhler numbers
far way from the bifurcation point, where the solution takes
the shape of a well defined front, we may use a superposition
of tanh functions for the test functionCshd. Here, the free
parameters are the inverse width of the interface and the total
width of the front. We can apply the same technique to de-
termine these two free parameters. This will be done in
Sec. V.
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IV. BEHAVIOR CLOSE TO THE SADDLE NODE
BIFURCATION

In this section we apply the technique described in the
previous section to describe the behavior near the saddle
node bifurcation where the solution is well approximated by
a bell-shaped function with two free parameters, namely, the
amplitudef0 and the inverse pulse widthw. This is a purely
numerical observation and has no further analytical justifica-
tion.

A. Autocatalytic system

We first investigate the autocatalytic systems3d. As has
been observed numerically inf14g, steady solutions to the
one-dimensional problem can be obtained for values of
Da.Dac. As we approach the bifurcation point the ampli-
tudes of the solutions to the autocatalytic reaction decrease to
zero ssee Fig. 1d. Conversely, with increasing Damköhler
number the pulse width increases and the maximal amplitude
saturates aroundcsxd=1. Here, the solution is a regular front
solution with a well defined plateau and a narrow steep front.

We are interested in steady-state solutions and set
]c/]t=0 in Eq.s3d. We obtain the ordinary differential equa-
tion

w2]2C

]h2 + h
]C

]h
+ Da Cs1 − f0Cd = 0, s6d

whereh=wx. As described in Sec. III, we need to project Eq.
s6d onto the tangent space of the restricted solution submani-
fold. We require

kw2Chh + hCh + Da Cs1 − f0CduCl = 0, s7d

kw2Chh + hCh + Da Cs1 − f0CduhChl = 0, s8d

where the angular brackets indicate integration over the
whole h domain. Using kChhCl=−kCh

2l=2khChhChl and
khChCal=−kCa+1l / sa+1d, we can simplify the set of equa-
tions to get an expression for the amplitude of the form

f0 =
1

kC3l
3

5Da
SkC2lS4Da − 1

2
D − 2kh2Ch

2lD .

Choosing a Gaussian test functionC=exps−h2d, this reduces
further to

f0 =
3Î6

5
SDa − 1

Da
D . s9d

This immediately yields the critical Damköhler number
Dac=1, which is verified by numerical simulation of the full
autocatalytic systems3d fsee Fig. 2sbdg.

Using the results9d for the amplitudef0 we can calculate
the inverse pulse widthw from eithers7d or s8d. We obtain

w =Î7 − 2Da

10
. s10d

For values of Da.3.5 Eq.s10d yields purely imaginary val-
ues indicating that our method breaks down, and that at these

FIG. 1. The steady solutions of the autocatalytic reaction
for logarithmically spaced values of Da between Da=Dac and
Da=100.

FIG. 2. Comparison of numerical simulations of our analytical
resultsscontinuous linesd with the autocatalytic model Eq.s3d. sad
Pulsecsxd at Da=1.35.sbd Pulse amplitudef0 versus Damköhler
number Da. The continuous line is our analytical result for the
stable branch of the saddle node bifurcations9d.
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Damköhler numbers the solution cannot be approximated by
a bell-shaped function anymore. We note that the solution
“saturates” to become a frontlike solutionssee Fig. 1d at
Da<10. However, the solution loses its bell-shaped charac-
ter before that “saturation” point.

Figure 2 shows a comparison of our analytical resultss9d
ands10d with numerical simulations of Eq.s3d. The analyti-
cal results for the amplitude fit progressively better as we
approach the saddle node, corresponding to the fact that the
solution is well approximated by a bell-shaped function the
closer it is to the saddle node.

B. Bistable system

We can apply the same methodology used in Sec. IV A to
the bistable systems4d. The steady solutions of the bistable
system have the same behavior as those in the autocatalytic
systems3d. Close to the bifurcation point at Dac the solution
takes the form of a bell-shaped functionssee Fig. 3d, whereas
the solution approaches a front solution for higher values of
the Damköhler number as is evidenced in Fig. 3.

As in Sec. IV A, we look at stationary front solutions in
the study ofs4d, and consider

w2d2C

dh2 + h
dC

dh
+ Da Csa − f0Cdsf0C − 1d = 0. s11d

Integrating the product of Eq.s11d with C and withh ]C/]h
over theh domain leads to expressions for the amplitudef0
and the inverse widthw.

We obtain a quadratic equation for the amplitude,

Af0
2 + Bf0 + C = 0, s12d

where, as before, the coefficients can be obtained explicitly
for a specific choice of test function. Choosing a Gaussian
test function, we have

A =
3

4
, B =

− 5s1 + ad
3Î3

, C =
Î2s1 + Daad

Da
. s13d

This yields two solutions for the amplitudef0, one corre-
sponding to a stable branch and one corresponding to an
unstable branch. These two branches collide at the critical
Damköhler number and disappear via a saddle node bifurca-
tion. An expression for the critical Damköhler number for
any given value ofa can be obtained from Eq.s12d, with the
conditionB2−4AC=0.We find that

Dac =
1

qs1 + ad2 − a
with q =

25

81Î2
.

This poses an upper bound fora,

amax=
1 − 2q − Î1 − 4q

2q
,

which is approximatelyamax<0.4744. Hence the chaotic
stirring changes the Maxwell point which in the nonstirred
case is ata=0.5.

As in Sec. IV A the inverse width can be calculated as
well.

In Fig. 4 we show a comparison of our analytical results
s12d ands13d with numerical simulations of Eq.s11d. In Fig.
4 we see that the correspondence of our analytical results
with the numerical simulation of the full systems11d is much
better for the unstable branch than for the stable branch. As a
matter of fact, the unstable solutions obtained by integrating
s11d by means of a shooting method stay close to a bell-
shaped function even far away from the bifurcation point at
Da=Dac.

V. BEHAVIOR FAR AWAY FROM THE BIFURCATION

In this section we apply the technique described in Sec.
III to describe the behavior far away from the saddle node
bifurcation. For large Damköhler numbers the solution is not
bell shaped anymore but instead becomes a front solution
with a well defined plateaussee Figs. 1 and 3d. Numerical
simulations show that the solution in this regime is well ap-
proximated by a test function of the following form:

Csxd = 1/2htanhfwsx + ndg − tanhfwsx − ndgj. s14d

Again we have two free parameters, namely, the total width
n and the inverse interface widthw. This, in principle, pro-
vides two conditions by projecting onto the tangent space of
the restricted solution space spanned by]C/]w and]C/]n.

In the literature of lamellar one-dimensional model equa-
tions, one encounters the following phenomenological argu-
ment for the location of the front. We recall that a stationary
front is given through a balance of the front velocityv with
the velocity of the chaotic stirringx. The front has a zero
velocity whenv=x, which impliesv=n. If we now approxi-
mate the front velocityv by its unstirred value, we can cal-
culatev as a function of the Damköhler number.

Our non-perturbative technique is able to deduce this phe-
nomenological formula for the front widthv for the bistable
cases. There is strong agreement between our theory and the

FIG. 3. The steady solutions of the bistable reaction witha
=0.2 for logarithmically spaced values of Da between Da=Dac and
Da=1000.
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phenomenological formulaesup to 0.1%d. Therefore, for
simplicity, in the following sections we use the phenomeno-
logical argument to close the equations for the two free vari-
ablesw andn.

A. Autocatalytic system

For the autocatalytic systems3d, the front velocity for the
unstirred case is given byv=2ÎDa fprovided that the initial
condition is of a form such ass14d f23,24gg. Hence the phe-
nomenological argument yields

n = 2ÎDa. s15d

Figure 5sad shows that the phenomenological argument in-
deed is a good approximation.

Equations15d can now be used to close one of the two
conditions of the projection method. Without loss of gener-

ality, we choose the projection onto]C/]w. The resulting
equation is

kw2Chh + hCh + Da Cs1 − CduhChl = 0. s16d

Here we chooses14d as a test function and expressn by s15d.
The resulting equation forw is transcendental and we need to
evaluate it numerically. In Fig. 5sbd a comparison of our
result with the numerical simulation of Eq.s3d is shown.

B. Bistable system

For the bistable system, the front velocity for the unstirred
case is given byv=Î2Das1/2−ad f23,24g. Hence our phe-
nomenological argument now yields

FIG. 4. Comparison of numerical simulations of our analytical
resultsscontinuous linesd with the bistable model Eq.s11d solved by
a shooting method.sad Pulsecsxd at Da=9.sbd Pulse amplitudef0

versus Damköhler number Da. The continuous and dashed lines
show the stable and the unstable branches, respectively, of the
saddle node bifurcation according to our analytical results12d.

FIG. 5. Solution behavior for large Damköhler numbers Da far
away from the saddle node bifurcation. Numerical simulations of
the full autocatalytic systems3d are depicted by stars; the analytical
results are depicted by continuous lines.sad Total width n as a
function of the Damköhler number. The continuous line shows the
phenomenological formulas15d. sbd Inverse interface widthw as a
function of the Damköhler number. The continuous line shows our
analytical result.
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n = Î2DaS1

2
− aD . s17d

Figure 6sad shows again good agreement of the phenomeno-

logical argument with the actual dynamics of the full system.
Again, Eq.s17d can be used to calculate the inverse inter-

face widthw from the condition that the projection of Eq.s4d
onto ]C/]w vanishes. This condition is given by

kw2Chh + hCh + Da Csa − CdsC − 1duhChl = 0, s18d

where, as above, we uses14d as a test function, and express
n by s17d. As for the autocatalytic system, the inverse width
w can only be given by numerically evaluatings18d. In Fig.
6sbd a comparison of our result with the numerical simula-
tion of Eq. s4d is shown.

VI. SUMMARY AND DISCUSSION

We studied the solution behavior near the saddle node
bifurcation which occurs in one-dimensional simplified mod-
els of reaction-diffusion equations subjected to chaotic ad-
vection. The interplay of reaction dynamics with the chaotic
stirring leads to stationary fronts in the one-dimensional
model equation corresponding to filaments with a well-
defined width in the full two-dimensional system. Depending
on the Damköhler number which measures the ratio of the
time scales of the chaotic fluid motion and the reaction ki-
netics, the system undergoes a saddle bifurcation when the
fluid motion is much faster than the reaction kinetics.

We applied a technique originally developed for excitable
mediaf20g to study this saddle node bifurcation. We deter-
mined the critical Damköhler number and described the so-
lution close to the bifurcation point with good agreement
with numerical simulations of the full partial differential
equations.

By choosing a front-shaped test function we were able to
apply the technique originally developed to study behavior
close to the saddle node bifurcation to describe fully devel-
oped fronts far away from the bifurcation point. The two
conditions given by the variational technique for the two free
parameters of such a stationary front, i.e., its inverse inter-
face widthw and its total widthn, accurately reproduced the
numerical results. Moreover, we were able to reproduce a
widely used phenomenological argument, relating the front
width to the front velocity of the unstirred case. A compari-
son with numerical simulations justified our approach.
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